Template-based smoothing functions for data smoothing in Geodesy

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing Noisy Data with Spline Functions *

I t is shown how to choose the smoothing parameter when a smoothing periodic spline of degree 2m -1 is used to reconstruct a smooth periodic curve from noisy ordinate data. The noise is assumed "white" , and the true curve is assumed to be in the Sobolev space W,(*ra) of periodic functions with absolutely continuous v-th derivative, v = 0, t . . . . . 2 m I and square integrable 2m-th derivativ...

متن کامل

Smoothing of Bump Functions

Let X be a separable Banach space with a Schauder basis, admitting a continuous bump which depends locally on finitely many coordinates. Then X admits also a C∞-smooth bump which depends locally on finitely many coordinates.

متن کامل

On the use of spline functions for data smoothing.

The appropriateness of various numerical procedures for obtaining valid time-derivative data recently reported in the literature (Zernicke et a/., 1976: McLaughlin er al., 1977; Pezzack et u/., 1977) is discussed. A case for the use of quintic natural splines is presented. based on the smoothness of higher derivatives and flexibility in application. \‘ES; /\ . _J”P JGTc, SE=5 :;yz,s’sy = z7 ___...

متن کامل

Definable Smoothing of Continuous Functions

Let R be an o-minimal expansion of a real closed field. Given definable continuous functions f : U → R and : U → (0,+∞), where U is an open subset of Rn, we construct a definable Cm-function g : U → R with |g(x)− f(x)| < (x) for all x ∈ U . Moreover, we show that if f is uniformly continuous, then g can also chosen to be uniformly continuous.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geodesy and Geodynamics

سال: 2020

ISSN: 1674-9847

DOI: 10.1016/j.geog.2020.03.003